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Abstract— In this paper we develop a framework for operator
competition based on short term ownership of spectrum resources
and devise a dynamic spectrum access method called “Dynamic
Property Rights Spectrum Access (D-Pass)”. In the D-Pass model,
spectrum portions are allocated to operators on a short term
basis (few sessions) by a SPS (Spectrum Policy Server) that
serves as a controller/enforcer as well as a clearinghouse for
spectrum allocations. Prior to each short term allocation, the SPS
optimally determines a specific partition of spectrum resources
among the operators to maximize a system related objective
function. The operators are charged by the SPS for the amount of
spectrum they are allocated. Given the spectrum allocation, the
operators compete with each other for users present in the system
through demand responsive pricing, in the form of an iterative
bidding scheme reminiscent of simultaneous ascending auctions.
At every iteration, the operators make rate and price offers for
each user considering the bandwidth allocated to them and their
costs associated with serving the users. The users respond by
declaring the probabilities with which they will accept the service
offers made. We consider two different objective functions for the
SPS to maximize while determining the exact partition of the
spectrum resources: (1) the total expected bandwidth utilization,
(2) the minimum acceptance probability that a user accepts the
offered service. We demonstrate several tradeoffs between these
objectives through numerical experiments and illustrate the effect
of bandwidth cost on these tradeoffs. Our results also suggest that
employing short term allocation of resources could potentially
lead to performance gains as opposed to static allocation of
resources, especially in regimes where the bandwidth is relatively
expensive.

I. INTRODUCTION

The current spectrum governance scheme employed by the
FCC is in the form of a command and control approach in
which access to large portions of spectrum is under strict
governmental control. The spectrum is allocated for predefined
services with strict rules for physical layer technologies em-
ployed. The spectrum allocation decisions have mostly been
made with the aim of reducing unwanted interference among
communicating devices and based on the radio communication
technologies employed at the time of the decision making.
Such an allocation is typically long term and leads to the
underutilization of spectrum [1], [2].

Recent advances in wireless communications technologies
have brought new approaches to the way radio devices might
handle unwanted interference. The emergence of software

defined radio concepts and proposed cognition capabilities
for future radios seem to make possible distributed schemes
for coexistence and cooperation of many closely located fre-
quency agile communicating devices operating in same shared
spectrum. The success of the recent regulatory “unlicensed
band” experiments in the ISM bands have further brought into
question the need for static allocation of spectrum portions for
purposes of mitigating interference.

The above mentioned considerations have started an ongo-
ing debate regarding the possible alternatives to the spectrum
governance policy currently enforced by the US FCC [2]. The
alternative governance schemes considered by the research
community fall under two broad categories: (i) a market
based approach with emphasis on the spectrum property rights
model, and (ii) the spectrum commons model. Inspired by
the landmark work of Coase [3], the spectrum property rights
approach advocates, in the broadest sense, that spectrum can
be treated just like land, and private ownership of spectrum is
viable. The spectrum commons, on the other hand, proposes
that spectrum should be treated like common property, and all
communicating parties should have access to it as long as they
abide by some usage rules.

The lack of conclusive arguments in this debate has led to
recent calls [2], [4] for the development of practical spectrum
access models to help in the debate. Nevertheless, a positive
outcome of the debate has been the recognition to varying de-
grees, the advantages of employing dynamic access as well as
market based spectrum allocation. This entails development of
schemes that embody the dynamic nature of shared managed
access to spectrum commons and also support the exclusivity
of spectrum property rights.

In [5], we have proposed such an “Intermediate Model” in
which service provider competitions were modeled in a shared
managed access setting. The spectrum access model proposed
made use of dynamic access schemes and employed market
tools for spectrum allocation decisions while also promoting
exclusive usage on a temporary basis.

In this paper we present another such intermediate scheme
that retains a stronger bias toward the spectrum property
rights approach while also retaining aspects of dynamic and
competitive access. We call this scheme D-Pass (Dynamic
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Property Rights Spectrum Access). We focus more on the
technology and network economics issues and do not go into
issues that would otherwise be relevant to a property rights
regime, such as the dispute resolution algorithms, secondary
markets or flexibility of usage.

Coordinated spectrum access in a dynamic setting requires
the presence of a central controller responsible for mediating
between spectrum consuming parties. In [5]–[7], a spectrum
policy server (SPS) was introduced to serve as such an enabler
for coordinated spectrum access. The SPS is a central server
responsible for coordinating spectrum access in a specified
geographical region. It functions as a controller/enforcer as
well as a clearinghouse for spectrum allocations. The SPS’s
role can also be extended to that of a spectrum broker [8],
[9] who coordinates spectrum access across different serving
areas or heterogenous devices in a geographical area.

The D-Pass model proposes a framework for dynamic
allocation of spectrum resources and competitions among the
operators (service providers) serving a specified serving area.
Various other dynamic spectrum allocation schemes manag-
ing spectrum access across service providers have also been
studied [10], [11]. [12] develops a spectrum allocation scheme
based on spectrum auctioning among the operators, however
it does not consider operator competitions for the users in the
system.

The allocation of spectrum resources in the D-Pass model
is based on session(s) based ownership of spectrum portions
by the operators. The operators purchase portions of spectrum
from the SPS and pay for the amount of bandwidth they secure
whether or not they actually utilize all of it. The spectrum
purchases are valid for a single communication session or
possibly more. In the rest of the paper, unless specified
otherwise, we consider spectrum allocation systems in which
allocations are valid for one communications session only. No
operator can use the portion of spectrum which is assigned
to its competitors. In this sense the spectrum resource can be
considered under the framework of property rights with short
term dedication. The SPS optimally determines how much
bandwidth each operator can own based on the maximization
of a predefined objective function. The objective can be any
system related metric like the expected bandwidth utilization
in the system, metrics relating to mean user appreciation for
the provided service, total revenue collected by the SPS or the
like.

Given any specific bandwidth partition among the operators,
the operators try to attract users through demand responsive
pricing [13], [14]. Enjoying differing service spectral efficien-
cies r [bps/Hz] for any given user, they make rate R [bps]
offers in exchange of a price P [units] for the given user. The
user’s willingness to accept the service is modeled through an
acceptance probability A (R,P ). Each offer an operator makes
to a given user invokes an expected income to the operator
associated with the A (R,P ) as well as the price asked P , the
related fixed operational costs (independent of the offered rate
R). The operator’s total profit depends on the total expected
income it achieves from serving the users and its payment for

the spectrum portion it was allocated by the SPS.
The operator competition for the users is modeled in the

form of an iterative bidding scheme inspired by the simultane-
ous ascending auction [15], [16]. The operators make vectoral
offers of �R in exchange of vectoral prices �P at each round,
with each component of the �R and �P vectors denoting the
rate offer and the price asked for the corresponding user. In
each bidding round, the operators try to achieve the greatest
acceptance probabilities for the users they would benefit from
serving, while also maximizing their expected profits. In
making their rate offers, the operators are obliged not to
consume more bandwidth than that of the spectrum portion
allocated by the SPS. The bidding process is terminated the
first round there are no new bids for any user.

II. D-PASS MODEL

We consider a limited interference region with N users who
are served by M operators. The available bandwidth of WA

Hz is controlled by the SPS who partitions all or part of it
among the competing operators in the form of non-overlapping
portions. We assume each operator has a predefined number of
base stations in the region of interest that are fixed in location.
The user locations are not fixed, and keep changing at regular
time intervals.

The allocation of the spectrum resources is valid for the
duration of one communications session only. The sessions
between the operators and the users are assumed to be syn-
chronously initiated and finalized. In this work we assume
each instantiation of user locations mark the start of a new
communication session which lasts till a change in locations
of one or more users is detected. Consequently, any change
in user locations prompts a new spectrum allocation to take
effect.

The potential customers/users in the system have no long
term subscription to any operator. The operators compete for
the users at the initiation of each communication session
and the user-operator associations achieved at the end of
the competition are valid for the immediate communication
session only.

We consider an “interference free” system in which users
are served in non-overlapping spectrum portions, i.e. at each
point in the frequency spectrum, there is at most one user-
operator pair communicating at a time.

The final spectrum allocation among the operators for
any given session is the result of a hierarchical (two-tier)
optimization process. In the upper tier, the SPS iteratively
declares allocation vectors each of which induces an operator
competition in the lower tier. The operator competition results
in winning rate and price offers as well as user acceptance
probabilities. The SPS iteratively determines the optimal allo-
cation vector which maximizes the relevant objective function
considered. Fig. 1 illustrates this iterative optimization process.

In the following, we describe in detail the user acceptance,
operator income and spectrum allocation models that will
govern the customer preferences, operator optimizations and
bandwidth partition decisions for the D-Pass scheme proposed.
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SPS maximizes objective
function by adjusting W

Rate and price offers
and the user acceptance
probabilities

SPS declares W

Operators compete with each other given W

User 1 User 2 User 3
User N

Opr. 1 Opr. 2
Opr. M

Fig. 1. SPS based hierarchical optimization for maximizing the specified
system related objective function.

A. Users’ Acceptance Model

In demand responsive pricing [13], [14], it is important to
take into account the users’ responses to the pricing strategy
of the operator. From the user point of view, the service offer
made by the operator is acceptable only if the price asked
is reasonable. In [5], this consideration has been addressed
through the use of the acceptance probability function which
assigns acceptance probability values to a given rate-price
offer pair for a given user. In this section, we present a basic
description of acceptance probability that can also be found
in [5].

Intuitively, the acceptance probability A (R,P ) should have
the following qualitative properties. It should be an increasing
function of the rate R the user enjoys for a fixed price asked
P while decreasing in P for fixed R. Mathematically, these
properties are formulated as:

∂A

∂R
≥ 0,

∂A

∂P
≤ 0,

∀P > 0, limR→0 A (R,P ) = 0,

limR→∞ A (R,P ) = 1, (1)

∀R > 0, limP→0 A (R,P ) = 1,

limP→∞ A (R,P ) = 0.

While there are several candidate choices for the function
A (R,P ), we will follow [13], [14] and choose

A (R,P ) = 1 − e−Cu(R)µP−ε

(2)

where µ is the utility sensitivity of the user, ε is the price
sensitivity, and C is an appropriate constant. R affects the
acceptance probability through u (R) which stands for the
utility a user achieves given it communicates with rate R. In
this work we consider a typical utility expression as expressed

in (3).

u (R) =
(R/K)ζ

1 + (R/K)ζ
(3)

where K and ζ are parameters that determine the exact shape
of the above sigmoid function. Note that the above expression
gives normalized utility values in the interval [0, 1) with the
rate R = K yielding a utility of 1/2.

Note that the acceptance probability function can be differ-
entiated among users through the above parameters. In this
sense, the above acceptance model is similar to the Cobb-
Douglas curves that are used in economics [17].
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Fig. 2. The acceptance probability for K = 5 × 106, ζ = 10, C = 1,
ε = 4, µ = 4.

Fig. 2 illustrates the acceptance probability surface as a
function of offered rate R [bps] and asked price P [units]
for the parameter values K = 5 × 106, ζ = 10, C = 1, ε = 4
and µ = 4.

B. Operator Income Model

It is beneficial for the operators to stay in operation only if
the total expected profit they achieve serving the users com-
pensates the payments to the SPS for the bandwidth portion
purchased as well as the fixed operational costs involved in
serving the users.

The individual expected income operator i ∈ {1, ...,M}
achieves serving any arbitrary user n ∈ {1, ..., N} is expressed
as:

Ii,n (Ri,n, Pi,n) = A (Ri,n, Pi,n) (Pi,n − Fi) , (4)

where Ri,n and Pi,n are the offered rate and price, respectively,
corresponding to user n. Fi [units] is the fixed operational
cost incurred by operator i while serving any user. Note that
the fixed operational cost is incurred only if the service is
provided, and it does not depend on the quality (amount)
of service. In this sense, it is different from the sunk cost
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frequently encountered in pricing literature which refers to the
type of cost that is incurred whether the service is provided
or not.

A detailed discussion of the parameters involved in deter-
mination of Fi for a given operator is beyond the scope of this
work, but a relevant reference on cost estimation for further
reading is [18].

Note that the total expected profit of an operator i is
the difference between the sum of the individual expected
incomes from the users it serves and its payment for the
bandwidth it has purchased from the SPS at the beginning
of the communication session. This can mathematically be
expressed as:

Qi

(
�Ri, �Pi

)
=
∑

n

A (Ri,n, Pi,n) (Pi,n − Fi) − WiV,

i ∈ {1, ...,M}, n ∈ N
′
,

(5)

where n is the user index, and N
′

is the set of users the spec-
ified operator makes offers to.

(
�Ri, �Pi

)
are the offer vectors

which specify the offers for each user. Wi is the amount of
bandwidth owned by the operator and V [units/Hz] is the
unit bandwidth cost the operators need to pay to the SPS for
unit spectrum they purchase.

C. Spectrum Allocation Model

At the beginning of every communication session (with each
change in user locations), the available spectrum is partitioned
among the operators. Spectrum portions allocated to operators
are non-overlapping, with

∑M
i=1 Wi ≤ WA, where WA is

the total available bandwidth and Wi is the bandwidth of
the spectrum portion allocated to operator i. Note that, in
such a “property rights” scheme where the operators need to
make payments for the total amount of spectrum they buy,
irrespective of the extent of utilization, it is possible for the
operators to end up in a loss. Such a loss would be realized
in case the total expected income the operator achieves as
a result of the operator competition is not high enough to
compensate for its payments to the SPS for the spectrum
portions it purchases. This is much like a company making
investments to enter consumer markets and facing bankruptcy
due to wrong assumptions regarding the market conditions. In
our work, we assume that SPS not only mediates the allocation
of spectrum resources, but it also ensures a fair allocation in
the sense that all operators are prevented from negative profits.
Note that in order to accomplish this, the SPS might allocate
zero bandwidth for those operators who would otherwise have
negative profits, thus practically leaving them out of operation
for the current session.

The exact bandwidth allocation vector �W = [W1...WM ]T

is determined as a solution of the optimization problem where
SPS maximizes one of the following: (1) total expected band-
width utilization in the system; (2) the minimum acceptance
probability that a user accepts the offered service. Note that
there might be other choices for objective functions besides
the ones we consider in this paper.

The SPS maximizes the objective function subject to the
constraints that the total allocated bandwidth does not exceed
the total available bandwidth WA and that no operator ends
up with negative profit for the current session. Consequently,
the SPS optimization problem can be expressed as:

max
�W

Obj
(
., �W

)
st.

M∑
i=1

Wi ≤ WA

QS
i ≥ 0,∀i ∈ {1, 2, ...,M},

(6)

where Obj
(
., �W

)
is a generic notation for the objective

function the SPS maximizes. QS
i refers to the total expected

profit of operator i for the considered session. Note that the
maximum achievable values for Obj

(
., �W

)
depend on many

parameters including the user locations, cost structures and the
service spectral efficiencies of the operators.

The SPS optimization problem is solved using a sequen-
tial search method in which all combinations of bandwidth
allocations among the operators are tested and the one which
achieves the greatest objective value is chosen as the optimum
allocation. For any tested allocation vector �W , the opera-
tors compete with each other for the users considering the
bandwidth constraints imposed by the allocation vector, as
illustrated for the case of M = 2 operators in Fig. 3.

The operators compete with each other in the form of an
iterative bidding scheme that is reminiscent of simultaneous
ascending auctions. In this scheme, details of which will be
described later in the text, the operators make bids in rounds
in the form of vectors

(
�Ri, �Pi

)
∈ RN+ ×RN+ where i is the

index for the operator making the offer. Each of the N entries
of the offer vectors

(
�Ri, �Pi

)
specify the rate offers and the

price asked by the operator i for the corresponding user. The
result of the operator competition determines at most one of
the operators as the winner for each user, who then makes its
respective winning service offer as the final offer.

SPS

W1
W2

A

WW

WWW

WO

21

,
.,bjmax

21

Operator 2Operator 1

Vectoral
offers to users

User NUser 1 User 2 User 3 User 4

Fig. 3. SPS mediating iterative bidding processes among 2 operators for N
users.

257



D. SPS Objectives

The formulation of the SPS optimization problem in (6)
is generic enough to address many different objectives. In
this work we have limited the problem to two objectives as
mentioned earlier. We now present precise definitions for these
objective functions.

1) Maximizing the Expected Bandwidth Utilization (EBU ):
EBU(., �W ) is defined as the sum of the expected bandwidth
utilizations of the users. In this sense, it is a function of the
bandwidth allocation vector �W as well as the user locations
and the cost parameters in the system:

EBU
(
., �W

)
=

N∑
n=1

Af
n

(
., �W

)
W f

n

(
., �W

)
. (7)

In the above equation, Af
n and W f

n [Hz] refer to the winning
bid acceptance probability and bandwidth usage achieved for
user n as a result of the operator competition. W f

n depends
on the winning rate offer Rwinner [bps] and the winning
operator’s spectral efficiency rwinner,n [bps/Hz] in serving
the user, through the relation W f

n = Rwinner/rwinner,n.
2) Maximizing the Minimum Acceptance Probability

(Acpmin): The minimum acceptance probability is defined
as:

Acpmin

(
., �W

)
= min

(
Af

1

(
., �W

)
, ..., Af

N

(
., �W

))
(8)

In maximizing the minimum acceptance probability, the
SPS follows the max-min fairness criterion and achieves that
acceptance probability vector �Af = [Af

1Af
2 ...Af

N ] for which
Af

n can not be increased without decreasing Af
n∗ for some n∗

such that Af
n∗ ≤ Af

n. Thus in maximizing the above quantity
the SPS emphasizes a fairer allocation as opposed to the EBU
maximizing scheme.

III. OPERATOR COMPETITION AND ITERATIVE BIDDING IN

D-PASS MODEL

We assume that in the presence of a number of service offers
from different operators, any specified user accepts the service
offer of the operator which induces the greatest acceptance
probability for it, with the corresponding acceptance probabil-
ity and ignores all other offers (practically setting their relevant
acceptance probabilities to zero). Thus, in order to gain the
right to serve any given user, an operator needs to make the
offer which induces the greatest acceptance probability among
all.

Consequently, the operator competition for the users can
be modeled as an iterative bidding mechanism in which the
operators make bids in rounds, in the form of rate and price
offer vectors. The goal of the operators at each round is to
come up with offers that would maximize their expected profits
by inducing greater acceptance probabilities than those of the
competing offers for each user.

Note that while competing for a number of users simulta-
neously, each operator is making use of the limited spectrum
portion allocated to it, partitioning it among the rate offers it

makes to different users. In this sense, the operator competition
can be likened to a situation in which a number of goods
(users) are to be partitioned among a number of buyers
(operators) with budget constraints. The multi-item auction
theory in economics literature [19] presents many different
mechanisms through which multiple items can be assigned to
numerous bidders in such settings.

In this work, we have developed a bidding mechanism
which is similar to simultaneous ascending auctions [15],
[16] in terms of implementation. Even though simultaneous
ascending auction mechanisms do not always achieve the
optimal operating points, as frequently mentioned in auction
theory literature, we believe it is a good match for wireless
communications settings due to the simplicity of the mecha-
nism.

Below, we first present a brief discussion on simultaneous
ascending bid auctions before proceeding to provide a detailed
overview of the proposed bidding scheme considered here.

A. The Simultaneous Ascending Auction

The simultaneous ascending auction was first developed in
1994 for use in the US FCC’s spectrum auctions. It is a simple
extension of the single item ascending (English) auction to the
case in which a number of bidders (buyers) simultaneously
compete for multiple items.

The bidding occurs in rounds. At each round the bidders
make price bids for the items they are interested in. At the
end of each round the auctioneer declares the “standing high
bid” and the corresponding highbidder, for each item. The
auctioneer also declares the minimum bid for each item for
the next round, as the sum of the standing high bid and a
predetermined bid increment for the item. The predetermined
bid increments are often the larger of a fixed amount and a
fixed percentage (usually 5% or 10% ) of the standing high bid
[15], [16]. A participant who is not the current highbidder for
an item it is interested in, needs to increase it’s price bid next
round to exceed the current standing high bid by at least the
bid increment amount, in order to be in the winning position.
Note that the enforcement of the minimum bid rule aims at
avoiding lengthy bidding periods in which bidders exceed the
standing high bids only by negligible amounts each round.
The bidding is finalized at the first round in which no bidder
can raise its bid on any of the items anymore. Each item is
awarded to the bidder who holds the current standing high bid
for the item.

In such auction settings, the bidders can often end up with
only part of what they desire. Such situations can often lead
to the exposure problem in which the bidder ends up with
items that are not useful to it by themselves only, and only
are profitable to own in the company of some other items
which have been sold to different parties. A simple example
is an operator who wins only one of the two adjacent spectrum
portions which is not sufficient for profitable operation by
itself. In order to avoid this problem, in most versions of
the simultaneous ascending auctions, the bidders are allowed
to withdraw their bids. Such withdrawals, however are often
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punished with penalties. In some other versions, bid with-
drawal is not allowed. The bid for any item is considered as
a commitment by the bidder.

The simultaneous ascending auction mechanisms also spec-
ify rules regarding the activity and eligibility of the bidders.
Interested readers can find discussions relevant to these rules
in [15], [16].

B. The Iterative Bidding

Inspired by the generic rules cited above for a simultaneous
ascending auction, we propose a simple bidding scheme, as a
means of operator competition.

In the proposed bidding scheme, the operators make bids
in rounds. The bids are in the form of rate and price offer
vectors. At any given round, for any specified user n, the offer
which induces the greatest acceptance probability is declared
by the SPS as standing high acceptance probability (SHAPn)
for that user. At the end of each round, the SPS computes
the minimum acceptance probabilities (MAPi,n) for the next
round for each user-operator pair considering the standing high
acceptance probability SHAPn for the user and the minimum
acceptance probability increments enforced (MAPIi,n) for
any given operator i regarding user n.

Note that MAPIi,n may differ for different operators for
a given user n, as the operator who is currently the high-
est bidder (SHAP bearer) need not increase its acceptance
probability in the next round, while the opponent operators
need to exceed SHAPn by at least some predetermined value
δn in order to claim the user. δn can be considered as an
auction design parameter and is determined by the SPS. In
case a number of operators simultaneously induce the SHAP
for the user in any given round, only one of them (randomly
determined by the SPS) is treated as the current winner, while
the rest are obliged to make more attractive offers for the user
in the next round in order to be in the winning position. The
SPS declares the MAP values for the next round in the form
of �MAP i ∈ [0, 1)N vectors where each element in �MAP i

refers to the minimum acceptance probability operator i needs
to induce next round in order to be in the winning position
for the corresponding user.

The iterative bidding is initialized by allowing the operators
to choose their service offers without consideration of the
opponent strategy. It is finalized the first round in which there
is no new offers (no increase in SHAP ) for any of the users.

A technical issue related to the MAPI policy is the fact
that for any positive price P > 0, the acceptance probability,
by definition, is always less than 1; A (R,P ) < 1.

Considering the above, we define the MAP for any user n
and operator i as:

MAPi,n = min (SHAPn + MAPIi,n, Amax) (9)

where Amax < 1 is a predefined constant, which is set
as close to 1 as possible. SHAPn is the standing high
acceptance probability for the user from the previous round
and MAPIi,n ≥ 0 is the minimum acceptance probability

increment for operator i regarding user n, declared by the
SPS. MAPIi,n is defined as:

MAPIi,n =




0 if operator i has the
greater bid from last round,

δn otherwise,
(10)

where δn > 0 is the increment amount set by the SPS. There
can be different approaches for setting δn. In our numerical
experimentation we have considered increasing increments,
where δn is determined as a certain percentage of the SHAPn,
as explained later in the numerical results section.

We further impose the rule that if any operator happens
to make an offer inducing acceptance probability Amax for
any user, it wins the competition for the user and the other
operators may no longer make any offers for the specified
user. In case more than one operator makes the offer inducing
acceptance probability Amax for the first time simultaneously,
one of them is chosen by the SPS as the winner randomly. The
SPS declares the user for which the auction is finalized this
way in the form of a boolean vector �K ∈ {0, 1}N . For those
users for whom the competition is finalized, the corresponding
element of �K is set to zero, while for others it is set to 1.

While making their bids, the operators consider their costs
and maximize their expected profit at each round, subject to
the bandwidth constraints set by the allocation vector and
the bidding rules mentioned above. As in some versions of
simultaneous ascending bid auctions, we enforce the additional
rule that the current SHAP inducing offers should not be
withdrawn; if operator i is the one who has achieved the
SHAPn for the specific user n in the previous round, it
can not make an offer which implies a lower acceptance
probability than SHAPn for that user, otherwise it is penalized
(with negative infinity payoff).

Considering the rules cited above, the total expected profit
optimization problem for any operator at each round can be
mathematically expressed as:

max
�Ri, �Pi

(
N∑

n=1

βi,n (Ri,n, Pi,n) − WiV

)
st.

N∑
n=1

Woi,n ≤ Wi. (11)

In the above formulation, i is the index for the operator.
�Ri and �Pi refer to the offered rate and price vectors for the
operator, respectively. Wi is the spectrum portion allocated to
operator i and βi,n is a function which reflects the expected
income from user n for operator i as defined in (4), subject
to the rules of the iterative bidding cited above. Woi,n is the
bandwidth consumption relevant to the rate offer for user n.

βi,n can mathematically be expressed as follows:
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βi,n (Ri,n, Pi,n) =




0 if (A (Ri,n, Pi,n) < MAPi,n

or �Kn = 0) and MAPIi,n �= 0
−∞ if A (Ri,n, Pi,n) < MAPi,n

and MAPIi,n = 0
A (Ri,n, Pi,n) (Pi,n − Fi)

if A (Ri,n, Pi,n) ≥ MAPi,n,
(12)

where MAP i,n stands for minimum bid required for user n
regarding operator i, as defined in (9). Woi,n can be expressed
as:

Woi,n = Ri,n/ri,n (13)

where ri,n [bps/Hz] is the spectral efficiency of operator i for
user n.

Note that the definition implies that for any given user n,
if the operator does not exceed the SHAP by the minimum
increment even though it is not the SHAP bearer from the
previous iteration, or if the competition for the user is already
blocked by the SPS, the operator will gain zero income. If the
operator is the SHAP bearer from the previous round and it
lowers the acceptance probability it has induced in the previous
iteration, it is penalized by receiving negative infinity payoff.
An operator who is either the SHAP bearer from the previous
round (and does not lower the acceptance probability), or
who successfully induces greater acceptance probability for
the user, than that of the SHAP from the previous round,
simply achieves the expected income as defined in (4).

We now state the following theorems to develop some
intuition regarding operator preferences while making their
offers.

Theorem 3.1: For any operator i, the solution of the op-
timization problem (during the operator competition) in (11)
satisfies the constraint with equality;

∑N
n=1 Woi,n = Wi.

Proof: Consider any fixed price offer vector �Pi and any
rate offer vector �Ri such that

∑N
n=1 Woi,n < Wi. Assume

that the rate offer for an arbitrary user a, is increased from
Ri,a to Ri,a + ∆ by some positive ∆ > 0. This results in
a corresponding increase in the associated acceptance proba-
bility from A (Ri,a, Pi,a) to A (Ri,a + ∆, Pi,a). Considering
(12), it is clear that such an increase would potentially also
increase

∑N
n=1 βi,n (Ri,n, Pi,n), not altering the second term

(WiV ) of the objective function in (11). Consequently the
overall effect of such an increase would be an increase in the
achieved total expected profit. Thus, the operator would keep
increasing offered rates as long as the allocated bandwidth is
not exceeded. In the special case when the considered operator
may not further increase the induced acceptance probability for
any user (the acceptance probabilities have already reached
Amax), then the operator can increase both the offered rate
and price so that the induced acceptance probability does not
change. Inspection of (12) reveals that these increases would
still increase the expected profit for the operator. Thus, in this
special case the operator would again keep increasing offered
rates as long as the allocated bandwidth is not exceeded. It is

thus shown that, during the operator competition, the solution
of the operator optimization problem should always saturate
the constraint

∑N
n=1 Woi,n ≤ Wi.

The above theorem shows that in all rounds, both operators
will offer all of the spectrum portions allocated to them by the
SPS. This can be considered as a natural result of operating in
a property rights like regime; since the operators are charged
for all of the spectrum portions they control, irrespective of the
extent of utilization, it is always better to fully utilize them.

Theorem 3.2: For any given fixed system geometry (user
locations and number of users ) and fixed operational costs
Fi, i ∈ 1, 2, ...,M , the maximum achieved value for any one of
the two considered objective functions is non-increasing in unit
bandwidth cost V [units/Hz]; Obj∗ (V, .) ≥ Obj∗ (V + ∆, .)
where Obj∗ (V, .) is the maximum achievable value for the
objective function and ∆ > 0 is a constant.

Proof: Consider the operator optimizations in (11). Note
that the solution of the operator optimization problem does
not depend on V , as V is only included in the second term of
the objective function which does not involve any of the op-
timization parameters. Consequently, for any declared �W , the
value of objective function Obj(., �W ) does not depend on V .
On the other hand, the resulting operator profits diminish with
increasing V as their income from the users do not change and
payments to SPS increase linearly with V . Thus, the space of
allocation vectors �W for which the operators achieve non neg-
ative total profits diminish with increasing V . Consequently,
the optimization domain for the SPS in optimization problem
(6) shrinks, either decreasing the maximum achieved value
for the objective function; Obj∗ (V, .) > Obj∗ (V + ∆, .) or
at best keeping it unchanged; Obj∗ (V, .) = Obj∗ (V + ∆, .).

This theorem shows that increasing unit bandwidth cost
potentially hurts the SPS objectives considered in this paper.

IV. LONG TERM ALLOCATION OF SPECTRUM RESOURCES

IN D-PASS MODEL

So far the scheme we have described considers spectrum
resource allocation for a single communication session only.
We now briefly describe how this scheme could be extended
to address those cases in which the spectrum allocation is
considered for longer durations. Recall that the communication
session is defined to be the duration between consecutive
changes in user geometry. In this sense, a longer term alloca-
tion of resources would be valid for a number of consecutive
changes in user geometry.

We parameterize the duration of spectrum allocation de-
cision by T which denotes the number of communication
sessions for which the decisions are valid. Note that with
increasing T , the scheme approaches to a static allocation
approach.

The bandwidth allocation vector chosen by the SPS is valid
for T sessions in a row. Although the SPS decisions are made
considering T sessions, we assume that the operators still
compete for users at each instantiation of user locations (only
the spectrum management is in the form of static governance
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for the T sessions), through the iterative bidding described in
section III-B . Consequently, the long term SPS optimization
problem can be expressed as:

max �WT
ObjT

(
., �WT

)
st.

M∑
i=1

Wi ≤ WA

QT
i ≥ 0,∀i ∈ {1, 2, ...,M}

(14)

where �WT refers to the allocation vector which is valid for T
communication sessions and QT

i is the final profit of operator
i at the end of T sessions, which is defined as the sum of the
session based profits for each of the T sessions. ObjT is the
average value for the SPS objective function considered over
T sessions.

Note that the above described operation model is similar
to the operation of present day service providers. The service
providers purchase licenses for spectrum portions from the
FCC for long durations (approximately 10 years, subject to
extension). Their decision to actually purchase the spectrum
portions at the requested prices depends on their long term
profitability. However, they keep changing their market pene-
tration strategies several times during the 10 years they have
the right to use the specified spectrum portions.

V. NUMERICAL EXPERIMENTS

In this section we provide numerical results corresponding
to the D-Pass schemes described earlier in the text. In our
experimental setup, we consider M = 2 operators located in a
simple linear region. Each operator has only one base station.
Each change in user locations denotes the beginning of a new
communications session. The linear region and the locations
of the base stations are as depicted in Fig. 4, which shows an
instantiation of user locations for 8 users.

The spectral efficiency between base station i and the mobile
terminal n is determined as

ri,n = log2

[
1 +

Ps

No

(
di,n

L/4

)−2
]

, (15)

where Ps is the signal power, No is the AWGN variance, di,n

is the distance between the base station (operator) i and the
terminal, and L is the total length of the linear region in Fig.
4 (L = 1000 m). We set Ps = 2No, which guarantees a
SNR = 3 dB at the distance of L/4 = 250 m from the base
station.

The available bandwidth considered is WA = 10MHz and
the users are assumed to have utility parameters used in Fig.
2.

In order to keep the exhaustive search in SPS optimization
tractable, the bandwidth is quantized to be made of basic units
of approximately 380 kHz wide.

Recall that the fixed operational cost Fi for operators 1 and
2 can be a complicated function of many parameters including
the number of base stations, physical layer technology used
and the like. In this paper, for the sake of simplicity we
consider a symmetric cost structure with F1 = F2 = F

SPS

Operator 1
(AP 1)

Operator 2
(AP 2)

1000  [m]250 7505000

Fig. 4. Geographical region with two operators.

[units]. We also assume that the SPS will be charging both
operators at the same variable cost rate V [units/Hz].

During our experimentations, we have considered different
increment (MAPI) policies; including increasing increments
with increment δn = η × SHAPn, where η is a predefined
percentage. Note that in this approach the SPS imposed incre-
ments increase throughout the bidding period, since SHAPn

increases (or stays the same) with each iteration. We have
also considered diminishing increments where δn = η × (1 −
SHAPn). Note that in this approach, the increment is actually
diminishing in each round. Our observation is that the specific
choice of increment policy among these alternatives does
not significantly affect the comparisons presented below. The
plots included in this paper are achieved using the increasing
increments with η = 10%.

In the numerical experiments, we test three different
schemes. As mentioned earlier in section II-D, we consider the
expected bandwidth utilization (EBU) maximizing scheme and
the minimum acceptance probability (Min. Acp.) maximizing
scheme. For comparison purposes, we also consider the equal
partition (EP) scheme in which each operator is allocated
exactly half of the available spectrum, subject to the constraint
that the operator achieves positive profit at the end of the
competition, otherwise it is allocated no bandwidth.

We present plots for different cost (F and V ) values for a
8 user system. Recall that the base station locations are fixed
and the user locations are randomly determined assuming a
uniform distribution for each user. Each data point is generated
by testing 300 different instantiations of user locations (com-
munication sessions). The results are then averaged over all
300 different realizations and the average values are presented
in Figs. 5-10.

Fig. 5 shows the achieved expected bandwidth utilization
in a 8 user system, as function of cost parameters F and
V , for the EBU maximizing scheme. It is observed that, the
achieved expected bandwidth utilization is decreasing in both
cost parameters F and V . This observation is in accordance
with Theorem 3.2. We also observe (not shown here) that the
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Fig. 5. Expected bandwidth utilization in EBU maximizing system in a
8-user system.

same decreasing pattern remains for the schemes where the
SPS either maximizes the minimum acceptance probability or
equally partitions the bandwidth.

To develop a better understanding for possible comparisons
among the considered schemes as well as the effect of in-
creasing cost on various performance metrics, we consider
two different trajectories in the F -V plane shown in Fig. 5.
We conduct experiments for many (F, V ) pairs on these two
trajectories that are shown in Fig. 6. One of the trajectories
follows (F, V ) pairs along a line such that V WA/F = 0.5.
The other trajectory follows (F, V ) pairs along a line such
that V WA/F = 4. Note that the former trajectory reflects a
cost structure in which the variable spectrum cost V WA has
relatively lower weight against F , as opposed to the latter
trajectory. Consequently, we refer to the first trajectory as the
F-dominated trajectory and the latter one as the V-dominated
trajectory throughout the rest of the paper.

We parameterize points on the trajectories by the total cost
metric F + V WA. Each value of F + V WA denotes a unique
(F, V ) pair on the considered trajectory and increasing F +
V WA corresponds to progressing along the trajectory further
away from the origin.

In Figs. 7 and 8, we present the expected bandwidth utiliza-
tion and the average number of users served, as functions of
the cost metric F + V WA [units], with V WA/F = 0.5 (F -
dominated) and V WA/F = 4 (V -dominated), respectively.
The average number of users served in the system refers to
the number of users for which the final offered rates as well
as the final acceptance probabilities are positive.

Figs. 7(a) and 8(a) show that with increasing cost metric
the bandwidth utilization diminishes. The three schemes con-
sidered achieve very similar bandwidth utilizations for low
values of the cost metric along both the F -dominated and
V -dominated trajectories. As the cost metric is increased,
it is observed that the schemes perform differently, with
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Fig. 6. Illustration of the trajectories.

the EBU maximizing scheme achieving the best utilization.
The difference in the bandwidth utilizations of the schemes
observed with increasing cost metric is more dramatic along
the V -dominated trajectory. These results collectively suggest
that the achieved bandwidth utilization becomes more sensitive
to the specific scheme employed with increasing cost. It is seen
that intelligent optimization schemes are more helpful when
the unit bandwidth is relatively costly.

Figs. 7(b) and 8(b) show that the Min. Acp. maximizing
scheme always achieves the greatest average number of users
served in the system. This is intuitive since the Min. Acp.
maximizing scheme promotes a max-min fairness criterion
for the users. The number of users served is decreasing in
cost metric for the Min. Acp. maximization and EP schemes,
along both trajectories. It is observed that for low values of
the cost metric F + V WA, the EBU maximization scheme
results in the lowest number of users served. For the EBU
maximization scheme, as the cost metric is increased, a slight
decrease is followed by an increase and a final decrease, along
both trajectories. This pattern is more apparent along the V -
dominated trajectory (see Fig. 8(b)), where it is observed
that there is a cross-over between the curves for the EBU
maximizing and EP schemes.

We now present an interpretation of the above trend re-
garding the average number of users served for the EBU
maximizing scheme. Our detailed observations suggest that
in the EBU maximizing scheme, the SPS is in the tendency of
allocating most of the bandwidth to the operator who can serve
users which enjoy greater service spectral efficiencies. This
is much like a water-filling solution encountered in classical
resource allocation, in which users with good channels are
allocated more resources. Note that, considering the definition
of EBU in section II-D, such an allocation would increase
the EBU. Note also that, in the other schemes, there is no
such incentive. Consequently, for low cost values, the SPS
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Fig. 7. F-dominated trajectory

partitions the spectrum among the operators in such a way that
those users who are relatively further away from the access
points are not served at all. This often means that the operator
who is more likely to serve the distant users is allocated little
bandwidth by the SPS, forcing it to effectively deny service
to distant users and serve relatively low number of users.
However, as the cost is increased, the operator that is allocated
small spectrum portions is not able to maintain positive profit
anymore. Thus the SPS is obliged to allocate more resources to
such an operator, who in turn serves more users. This pattern
is more evident in curves along the V -dominated trajectory
simply because the variable cost V Wi (for operator i) in (11)
is the major factor in determining the affordability of spectrum
allocations, as F is compensated on a per user basis. As the
costs are further increased, a decrease is observed since with
even higher costs, the operators face diminishing returns and
can not make convincing offers to the users.

Figs. 9(a) and 9(b) support the above interpretation. They
show the total allocated bandwidth to the operators and the
average difference between bandwidths of spectrum portions
allocated to operators along the V -dominated trajectory for
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Fig. 8. V-dominated trajectory

the EBU maximizing scheme. The points on the curves corre-
sponding to data points in Fig. 8(b) are labeled. It is easy to see
that for the data points with low cost metric (points A,B,C,D),
the average difference between spectrum portions for operators
is considerably large, verifying the above intuition that the
operator likely to serve distant users is given considerably less
bandwidth. With increasing cost the total allocated bandwidth
stays more or less constant for the first four data points
(A,B,C,D), while the average difference is reduced, supporting
the above intuition that spectrum resources are more fairly
distributed in this region. This explains the increase in the
average number of users served from C to D (see Fig. 8(b)).
As the cost is further increased, the total allocated bandwidth
diminishes, suggesting that in this region the high cost makes
it difficult for operators afford spectrum portions allocated to
them.

In Figs. 10(a) and 10(b), we present the illustrative results
for longer term dedication of system resources in an EBU
maximizing scheme for the F -dominated and V -dominated
trajectories, respectively. The T = 1 curves refer to the
scheme in which the SPS updates the spectrum allocation
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Fig. 9. Bandwidth allocation among the operators along V-dominated
trajectory for the EBU maximizing scheme.

vector every communication session, e.g. every time a change
in user locations is detected. The T = 5 and T = 10 curves
refer to longer term spectrum allocation schemes in which the
SPS updates the allocation vector every 5 sessions and every
10 sessions, respectively. Recall that no matter what T is set
to be, the operators compete with each other each time there
is a change in user locations. The values plotted for T > 1
refer to the average values per communication session.

As the updates in spectrum allocation become less frequent,
the SPS is restricted to use the same allocation vector for
greater number of sessions. This seems to constrain the SPS
thus potentially reducing the achieved expected bandwidth
utilization. On the other hand, the constraints on the final
profits of the operators are relaxed as opposed to T = 1,
as the operators need to end up with positive profit only at the
end of T sessions, as opposed to every single session as in
T = 1. This seems to be in favor of increasing performance.

The plots shows that for the F -dominated trajectory, all
three updating schemes achieve similar performance, with T =
1 performing slightly better than the other two. This suggests
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Fig. 10. Effect of long term dedication of spectrum resources for the EBU
maximizing scheme.

that when the bandwidth is relatively inexpensive, the D-Pass
scheme could be implemented over time durations comprised
of several sessions, with negligible decrease in performance.

For the V -dominated trajectory, the T = 1 scheme achieves
significantly greater bandwidth utilization for high cost values.
Thus, when the bandwidth is expensive, a clear tradeoff
emerges between system performance (spectral efficiency)
versus the duration of the short term allocation.

These plots, thus, suggest that employing short term al-
location of resources could potentially lead to performance
gains as opposed to more slowly changing (or static) allocation
of resources, especially in regimes where the bandwidth is
expensive.

VI. CONCLUSIONS

In this paper we developed a framework for operator com-
petition based on short term ownership of spectrum resources
and devised a dynamic spectrum access method called “Dy-
namic Property Rights Spectrum Access (D-Pass)”. The D-
Pass model provides both the dynamic nature of managed
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shared access to spectrum commons, as well as the exclusivity
of the spectrum property rights. It also serves as an example
for the kind of practical spectrum access models that might
help solidify discussions relating to the spectrum debate. In
the D-Pass model, spectrum portions are allocated to operators
by a SPS (Spectrum Policy Server) on a short term basis (a
few sessions). Prior to each communication session, the SPS
optimally determines a specific partition of spectrum resources
among the operators to maximize a system related objective
function. The operators are charged by the SPS for the amount
of spectrum they are allocated. Given the spectrum allocation,
the operators compete with each other for users present in
the system through demand responsive pricing, in the form
of an iterative bidding scheme reminiscent of simultaneous
ascending auctions. At every iteration, the operators make
rate and price offers for each user considering the bandwidth
allocated to them and their costs associated with serving the
users. The users respond by declaring the probabilities with
which they will accept the service offers made. We considered
two different objective functions for the SPS to maximize:
(1) the total expected bandwidth utilization, (2) the minimum
acceptance probability that a user accepts the offered service.
We demonstrated several tradeoffs between these objectives
through numerical experiments and illustrated the effect of
bandwidth cost on these tradeoffs. Our results also suggest that
employing short term allocation of resources could potentially
lead to performance gains as opposed to static allocation
of resources, especially in regimes where the bandwidth is
relatively expensive.
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